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O This paper discusses Beity’s Brain, a teachable agent in the domain of river ecosystems that com-
bines learning by teaching with self-regulation menioring to promote deep learning and understand-
ing. Two studies demonstrale the effectiveness of this system. The first study focused on components
that define student-teacher interactions in the learning by teaching task. The second study examined
the value of adding meta-cognitive strategies that governed Betty’s behavior and self-regulation
hints provided by a mentor agent. The study compared three versions: a system where the student
was tutored by a pedagogical agent, a learning by teaching system, where students taught a baseline
version of Betty, and received tutoring help from the mentor, and a learning by teaching system,
where Betty was enhanced to include self-regulation strategies, and the mentor provided helfp on
domain material on how to become better learners and better teachers. Results indicate that the
addition of the self-regulated Betty and the self-regulation menior better prepared students to learn
new concepts later, even when they no longer had access to the SRL environment.

The development of intelligent agent technologies bodes well for computer-
based educational systems. From the perspective of interface design, what
the desktop metaphor is to organizing one’s documents, the agent meta-
phor is to education. People have a number of pre-existing social schemas
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that they bring to agent systems and that help guide them without
step-by-step prompting. These include the interpretation of gestures and
other attention focusing behaviors (Rickel and Johnson 1998), affective
attributions and responses (Reeves and Nass 1996) and the use of complex
behavioral sequences like turn taking (Cassell 2004). From the instructional
perspective, the agent metaphor can harvest the large repertoire of methods
that people use to learn through social interaction. Intelligent tutoring sys-
tems (Wenger 1987) capitalized on social models of learning by mimicking
some aspects of one-on-one human tutoring, though the original work was
not based on the agent metaphor. When combined with an agent paradigm,
intelligent tutors provide a wealth of possibilities; for example, an appropri-
ately structured intelligent agent can ask questions and raise user’s sense of
responsibility, and therefore, focus and motivate them to learn more deeply.
Also, because the agent is a computer application, it can go beyond what -
human teachers can do. For example, besides infinite patience, a computer
application can literally make an agent’s thinking visible by providing a
graphical trace of its reasoning (Schwartz et al. in press). The potential of
agent technologies for education are great. In this paper, we describe our
efforts at developing teachable agents. Teachable agents are computer agents
that students teach, and in the process, learn themselves.

There are two key challenges to making headway with pedagogical
agents. One challenge is the development of agent architectures and soft-
ware tools that are well-suited to educational applications. For example, we
recently began merging one of our agent applications with a three-dimen-
sional gaming world. The gaming system provided primitives for bleeding
and shooting, whereas we needed primitives for confidence and sharing.
In this paper, one of our goals is to sketch an agent architecture that per-
mits us to flexibly port and combine the capacities of our agents.

The second challenge is to determine effective ways to leverage the
agent metaphor for educational purposes. While many researchers are
attempting to make agents as realistic as possible, it is not clear that we want
agents to imitate what currently exists in education. For example, "a
research review by Ponder and Kelly (1997) determined that the science
education crisis in U.S. schools has been present for over four decades.
Science curricula still needs to work on increasing student literacy, encour-
aging conceptual understanding, motivating students, and developing con-
crete problem solving skills (Ponder and Kelly 1997; Bransford et al. 2000).
Unfortunately, current pedagogical practices tend to emphasize memoriza-
tion, which provides students with limited opportunities and little
motivation to develop “usable knowledge.” Blindly imitating prevalent
instructional interactions, like drill and practice, seems like a bad idea.

There have been significant developments in the area of pedagogical
agents, which have been defined as animated characters designed to operate
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in educational settings for supporting and facilitating learning (Shaw et al. 1999).
These agents are designed to play the role of a coach (Burton and Brown
1982). When needed, they intervene to demonstrate and explain problem-
solving tasks. Some systems use Al techniques to tailor their level of expla-
nation and demonstration to the student’s proficiency level. Multimodal
delivery that combines text, speech, animation, and gestures has been used
to improve communication between the agent and the student (Lester
et al. 1997; Moreno et al. 2000). In some cases, there have been attempts
to implement a two-way dialogue, using natural language understanding
mechanisms. In almost all cases (the exception is a system called Carmen’s
Bright IDEAS: [Marsella et al. 2000]), the pedagogical agents follow a
sequential, structured approach to teaching, and they significantly reduce
opportunities for exploration and discovery—characteristics that are
important for learning complex problem solving (Lajoie 1993; Crews
et al. 1997).

In our work, we have attempted to support three critical aspects of
effective interactions that the learning literature has identified as impor-
tant. One form of interaction helps students develop structured networks of
knowledge that have explanatory value. Not only do people remember better
when information is connected in meaningful ways, they are also more able
to apply it to new situations that are not identical to the original conditions
of acquisition (Bransford et al. 1989).

A second form of interaction needs to help students take responsibility
and make decisions about learning. Schwartz, Bransford, and Sears (in
press) describe a conversation with school superintendents. These
researchers explained that they studied learning and asked the superinten-
dents what they wanted for their students. The superintendents’ unani-
mous response was that they wanted their students to be able to learn
and make decisions on their own once they left school. Thus, their goal
for instruction was not to train students in everything they would need to
know, but rather, it was to prepare the students for future learning (Bransford
and Schwartz 1999). Instruction that spoon feeds students does not work
as well for future learning as does instruction that helps students take on
the responsibility of exploring and inventing their own solutions before
they receive the canonical answer (Schwartz and Martin 2004).

The third aspect that has shown exceptional importance for learning
is the development of reflection or meta-cognitive skills that include monitor-
ing the quality of one’s knowledge and learning decisions. These skills are
ideally developed through social and modeling interactions (Palinscar
and Brown 1984) and therefore, agent technologies are extremely well-
suited to developing reflective meta-cognition (Shimoda et al. 2002).

In our work on teachable agent technologies, we have leveraged a parti-
cular model of social learning—learning by teaching—which we believe
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does a good job of capturing each of these aspects of effective learning.
We say much more about teachable agents next, including their motivation
in the learning literature, their computational aspects, and the results
of empirical studies on their effectiveness.

LEARNING BY TEACHING

The cognitive science and education literature supports the idea that
teaching others is a powerful way to learn. Research in reciprocal teaching
(e.g., Palinscar and Brown [1984]), peer-assisted tutoring (e.g., Willis and
Crowder [1947]; Cohen et al. [1982]), programming (e.g., Dayer [1996];
Kafai and Harel [1991]; Papert [1993]), small-group interaction (e.g.
Webb [1983]), and self-explanation (Chi et al. [1994]) hints at the poten-
tial of learning by teaching. Bargh and Schul (1980) found that people who
prepared to teach others to take a quiz on a passage learned the passage
better than those who prepared to take the quiz themselves. The literature
on tutoring has shown that tutors benefit as much from tutoring as their
tutees (Graessaer et al. 1995; Chi et al. 2001) Biswas and colleagues
(2001) report that students preparing to teach made statements about
how the responsibility to teach forced them to gain deeper understanding
of the materials. Other students focused on the importance of having a
clear conceptual organization of the materials. Beyond preparing to teach,
actually teaching can tap into the three aforementioned critical aspects of
learning interactions: structuring, taking responsibility, and reflecting.

For structuring, teachers provide explanations and demonstrations dur-
ing teaching and receive questions and feedback from students. These
activities can help teachers structure their own knowledge. For example,
teachers’ knowledge structures become better organized and differentiated
through the process of communicating key ideas and relationships to stu-
dents and reflecting on students’ questions and feedback. Our studies have
found that students who teach develop a deeper understanding of the
domain, and can express their ideas better than those who study the same
material and are asked to write a summary (Biswas et al. 2001). For taking
responsibility, teaching is frequently an open-ended, self-directed problem-
solving activity (Artz and Armous-Thomas 1999). Teachers need to take on
the responsibility of deciding which content is most relevant. Additionally,
there is a strong motivation component of teaching where the teacher
needs to take responsibility (and joy) for the learning of their pupils.
Finally, for reflection, effective teaching requires the explicit monitoring
of how well ideas are understood and used. Studies have shown that tutors
and teachers often reflect on their interactions with students during and
after the teaching process (Chi et al. 2001). This reflection aids teachers
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in evaluating their own understanding of domain concepts as well as the
methods they have used to convey this understanding to students.

Each of these idealized benefits of teaching will largely depend on the
context and resources for instruction, as well as the quality of the students
one teaches. Most instructors can distinguish those students who push their
own thinking from those who provide little intellectual stimulation. When
reviewing the literature on computer based learning-by-teaching environ-
ments, there have been some hints of how to realize these positive benefits,
though not all the work is equally relevant. For example, the intelligent
tutoring system paradigm has typically led students through procedural
sequences, and therefore, it is not ideal as a guide for how to design envir-
onments that help students develop responsibility and reflection.

- One promising body of techniques comes from work on learning by
induction, though in large part, this work has emphasized automated learn-
ing by the agent instead of focusing on explicit teaching by the user. This
work includes learning from examples, advice, and explanations (e.g.,
Huffman and Laird [1995]; Srinivas et al. [1991]). In Huffman and Laird’s
system (1995), agents learn tasks through tutorial instructions in natural
language. Users have some domain knowledge, which they refine by look-
ing at the agents behaviors. Lieberman and Maulsby (1996) focus on teach-
ing “instructible agents” by example and by providing advice. Agents learn by
observing user actions, sometimes by being told what is relevant, and some-
times by identifying relevant information, applying it, and learning through
the correction of mistakes. Michie et al. (1989) developed the Math Con-
cept Learning System for solving linear equations. Users supplied the stra-
tegies for solving problems by entering example solution traces, and the
system learned via an inductive machine learning algorithm, ID3 (Quinlan
1986). In comparison with other control conditions (an equation solving
environment, a passive agent), students seemed to learn better with this
agent. For this domain, machine learning techniques when coupled with
learning by teaching systems proved to be useful in helping students to
learn.

Research projects that emphasize learning by programming share fam-
ily resemblances to learning by teaching in that students “inform” the com-
puter to take specific actions. But these approaches have not fully
capitalized on the agent metaphor and the host of social schema that it
provides. Repenning and Sumner (1995) for example, developed visual
programming environments that reduce the overhead of learning to pro-
gram agents. Smith et al.’s (1997) Cocoa program (previously KidSim)
allows young users to program their agents by example. Once created, they
become alive in the environment and act according to their prepro-
grammed behavior. Other work, such as the Persona project (Ball et al.
1997), has focused on sophisticated user interactions, communication,
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and social skills. Research that has specifically leveraged the teaching meta-
phor has shown positive results that may go beyond the benefits of pro-
gramming. Obayashi et al.’s study (2000) reported significant learning
gains in subjects using their learning-by-teaching system compared to a tra-
ditional computer-assisted instructor (CAI). Chan and Chou’s (1997) study
using reciprocal tutoring methods concluded that learning by teaching is
better than studying alone. Hietala and Niemirepo (1998) designed the
EduAgents environment that supports the solving of elementary equations.
Their goal was to study the relation between the competency of agents
designed as learning companions and student motivation. They found that
students with higher cognitive ability preferred interacting with strong
agents, i.e., agents that produced correct results and used a “knowing” man-
ner of speaking. The weaker students preferred weak agents that initially
made mistakes and were not confident of their answers, but improved their
performance as the students improved in their abilities. A third group, intro-
verted students, initially used the weak and strong agents equally, but as they
progressed to more complex problems, they preferred the strong agents. All
groups showed marginal improvements in their post-test scores. DENISE
(Development for an Intelligent Student Environment in Economics)
(Nichols 1994) used a simulated student to take on the role of a tutee in
a peer-tutoring situation. The agent employed a Socratic teaching strategy
to acquire knowledge from the student, and create a causal structure, but
this structure was not made visible to the user. As a result, when the agent
quizzed students to get them to self-assess the structures they had created,
these students often failed to understand the agent. They could not remem-
ber what concepts they had previously taught, and found the interactions to
be unnatural and frustrating. :

In our design of teachable agents, which we describe next, we have tried
to work around two aspects of prior systems that we think may limit the
power of learning by teaching. One aspect is that these systems focus on
learning from the activities of users during problem solving and the exam-
ples that they provide, but the representations of that knowledge and the
reasoning mechanisms are not made explicit to the users. They are like
many full-blown simulations and videogames, where the underlying logic
of the program is hidden from the student rather than made transparent
and more easily learned. Thus, students may find it difficult to uncover,
analyze, and learn from the activities of these agents, and they are less likely
to develop the level of structured knowledge that is embodied in the agent
itself. The second aspect of these systems that may not do full justice to
learning by teaching is that they have followed the tendency of the intelli-
gent tutoring system paradigm to “over control” the learners’ actions. In
the typical session, the learners solve a set of small problems related to
the curriculum that have structured answers in the order that the
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software tutor selects. Other than local problem-solving decisions, the
computer is in charge of the learning. We suspect (and test below) that this
limits students’ opportunities to develop responsibility and skills for learn-
ing on their own.

A New Approach to Learning by Teaching

Unlike previous studies on learning by teaching, the current took on
the challenge of teaching students who were novices in the domain, and
also had very little experience in teaching others. We have designed teach-
able agents (TAs) to provide important structures that help shape teacher
thinking (Biswas et al. 2001;2004). Each agent manifests a visual structure
that organizes specific forms of knowledge organization and inference.
In general, our agents try to embody four principles of design:

e Teach through visual representations that organize the reasoning struc-
tures of the domain (e.g., directed graphs, matrices, etc.).

e Build on well-known teaching interactions to organize student activity
(e.g., teaching by “laying out,” teaching by example, teaching by telling,
teaching by modeling).

e Ensure the agents have independent performances that provide feed-
back on how well they have been taught (each agent depends on a dis-
tinct Al reasoning technique: qualitative reasoning, logic, and genetic
algorithms).

e Keep the start-up costs of teaching the agents very low (compared to pro-
gramming). This occurs by only implementing one model of reasoning,
rather than attempting to provide a complete system with multiple repre-
sentations and reasoning elements.

We have designed a number of agents that aid students in a variety of
domains: mathematics, science, and logical reasoning (Biswas et al. 2004;
Leelawong et al. 2003; Leelawong et al. 2002; Biswas et al. 2001; Schwartz
etal., to appear). One of our agents, Betty, described next, makes her quali-
tative reasoning visible through a dynamic, directed graph called a concept
map. The fact that TAs represent knowledge structures rather than the
referent domain is a departure from many simulations. Simulations often
show the behavior of a physical system, for example, how an algal bloom
increases the death of fish. TAs, however, simulate the behavior of a per-
son’s thoughts about a system. This is important because the goal of learn-
ing is often to simulate an expert’s reasoning processes about a domain,
not the domain itself. Learning empirical facts is important, but learning
to think with the expert problem solving theory that organizes those facts
is equally important. Therefore, we have structured the agents to simulate
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particular forms of thought that may help teacher-students structure their
thinking about a domain.

BETTY’S BRAIN: A LEARNING-BY-TEACHING ENVIRONMENT
(VERSION 1)

The Betty’s Brain system, discussed in this paper, is designed to teach
middle school students about interdependence and balance among entities
in a river ecosystem. A primary consideration in the design was to ensure
that it could be used by students who had almost no experience in teach-
ing, and little prior knowledge of the domain. Therefore, we designed
the computer-based agent to have stable and predictable characteristics,
for example, Betty never forgets what she is taught. Also, unlike other intel-
ligent agents, Betty does not use machine learning techniques to learn
from examples or by induction; she knows and reasons with what she has
been taught by the student. This made it easier for our student teachers
to understand the agent’s thinking and reasoning processes. The use of
a computer agent also absolved us of the responsibility of “bad teachers
frustrating students,” because there is little the student could do to upset
the psyche or destroy the motivation of the software agent. On the other
hand, in preliminary work with children, we found that students were very
motivated by the agents, and they readily took on the responsibility for
their learning, and they actively worked to make structured knowledge.

In the next sections, we describe the basic agent architecture of one
agent, Betty’s Brain. We follow with an example of research conducted
on this basic system. We then describe how we improved the system to help
young students become more effective teachers (and students) by provid-
ing metacognitive support. One of the exciting aspects of this improved sys-
tem is that it had consequences for how well students were able to learn
later, even when they were not using the system anymore.

Agent Architecture for Betty’s Brain

A learning by teaching system requires a shared representation and
reasoning structure that the student teacher shares with the teachable agent.
For Betty, the representational structure had to be intuitive and easily under-
standable by fifth grade students, and at the same time sufficiently expressive
to help these students create and organize, and reason with the knowledge
structures to solve problems. A widely accepted technique for constructing
knowledge is the concept map (Novak 1996). Concept maps provide a mech-
anism for structuring and organizing knowledge into hierarchies, and allow
the analysis of phenomena in the form of cause-effect relations (Kinchin and
Hay 2000; Stoyanov and Kommers 1999). This makes them amenable to
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modeling scientific domains, in particular, dynamic systems. Moreover, an
intelligent software agent based on concept maps can employ reasoning
and explanation mechanisms that students can easily relate to. Thus the con-
cept map provides an excellent representation that serves as the interface
between the student and the teachable agent. Students teach Betty by adding
knowledge using this representational structure.

Figure 1 illustrates the interface of Betty’s Brain. Students use a graphi-
cal point and click interface, in particular the teach concept, teach link, and
edit buttons to create and modify their concept maps in the top pane of
the window. Once taught, Betty can reason with her knowledge and answer
questions. Users can formulate queries using the ask button, and observe
the effects of their teaching by analyzing Betty’s answers. When asked (by
clicking the explain button), Betty provides explanations for her answers
by depicting the derivation process using multiple modalities: text, ani-
mation, and speech. Betty uses qualitative reasoning to derive her answers
to questions through a chain of causal inferences. The visible face in the
lower left, which animates as it speaks, is one way in which the user inter-
face attempts to provide engagement by increasing the social interaction
between Betty and the student. This should help the student’s motivation
to learn. (Reeves and Nass 1996).

Betty's Brain
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FIGURE 1 Betty’s Brain: Interface.
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The system implementation adopts a generic agent architecture
illustrated in Figure 2. It includes components of a traditional intelligent
architecture, e.g., Arkin’s Autonomous Robot Architecture (AuRA) that
includes five primary components: (i) a perception system, (ii) a know-
ledge base for maintaining a priori and acquired world knowledge, (iii) 2
planning mechanism (hierarchical deliberative plus 2 reactive planner),
(iv) a motor subsystem that is the interface to the physical robot control
mechanisms, and (v) a homeostatic control system that monitors the inter-
nal state of the system (Arkin 1991). Betty’s Brain uses 2 simplified version
of this standard agent architecture.

The monitor component of Betty is the equivalent of the perception
system. It is tailored to understand user actions that include creating,
modifying, and deleting concepts and links in the concepts map structure,
querying Betty, asking her to explain her answer, and requesting that she
take a quiz with the teacher.

The primary component of the agent is its decision maker and memory
subsystems (in a loose way they correspond to the planner and knowledge
base, respectively). The decision maker implements the qualitative reason-
ing mechanisms that can draw inference from concept map structures. The
reasoning mechanism is designed to answer queries posed by the student,
generate answers to quizzes, and provide explanations for how answers

Agent

Memory

i ' N Executive

- Decision Maker Ag:;u‘};ew
onitor

Agent Speech
Pattern Tracker Agent Reasoner
Agent Emotions

Environment Agent

FIGURE 2 Components of agent architecture.
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were derived. In addition, the reasoner implements strategies that govern
the dialogue process with the user. In some sense, the reasoning mechan-
isms also play the role of homeostatic control in that they can inform the
student about Betty’s lack of knowledge in the context of queries that are
posed to her.

The executive plays the same role as the motor control subsystem for
robotics systems. It controls the dialogue mechanisms, and Betty’s speech
and animation engines. These are primarily used to explain how Betty
derives her answer to a question. The first version of the system that we
describe next was purely reactive and did not include deliberative planning
mechanisms. A second version of the system includes self-regulation strate-
gies, and this requires some planning to determine how Betty should
behave and respond to the student’s requests.

A second agent, the mentor, Mr. Davis, provides hints to Betty and her stu-
dent teacher on how to improve Betty’s performance after she takes a quiz.
The mentor agent knowledge base includes a complete concept map of the
domain and the qualitative reasoning mechanisms. He also has additional
mechanisms to compare the expert map with the student-created map,
and to use the differences to provide appropriate feedback. The mentor
provides different levels of hints that range from general suggestions to spe-
cific feedback on concepts and links the students needs to add to the con-
cept map to get a quiz question correct. Structured templates define the
mentor’s dialogue structure. We discuss the individual components of
Betty’s Brain in more detail next.

Teach Betty

Students teach Betty by creating a concept map. A concept map is a col-
lection of concepts and relations between these concepts (Novak 1996). A
relation is a unidirectional link connecting two entities. Concepts maps
provide an expressive graphic language for creating domain knowledge
structures, and this provides students with a means for creating sophisti-
cated structures without getting involved in complex programming tasks
(Biswas et al. 2001; Leelawong et al. 2003).

Figure 1 displays an example of a concept map that represents what the
student has taught Betty. This map is not a complete representation of all
the knowledge in the domain, but merely an example. The labeled boxes
correspond to concepts (the labels are concept names), and the labeled
links correspond to relations. Students can use three kinds of links, (i) cau-
sal, (i) hierarchical, and (iii) property. Students use property links to
embed notes or interesting characteristics of an object in their concept
map (e.g., “Fish live by rocks.”). Hierarchical links let students establish
class structures to organize domain knowledge (e.g., “Fish is a type of
animal.”).

O
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A causal link specifies an active relationship on how 2 change in the
originating concept affects the destination concept. Two examples of this
type of relation are “Plants use carbon dioxide,” and “Plants produce dis-
solved oxygen.” The causal relations are further qualified by increase (++)
and decrease (——) labels. For example, “use” implies a decrease relation,
and “produce” an increase. Therefore, an introduction of more plants into
the ecosystem causes a decrease in the amount of carbon dioxide. An
increase in the number of plants also causes an increase in dissolved
oxygen. When students create a causal link, they are explicitly required
to specify whether the link is an increase or a decrease relation.

Query Betty

Students can query Betty about what they have taught her. The system
provides a template that students use to create queries for Betty, e.g., If
Concept A increases (decreases) what happens to Concept B? The query mode uses
two primary components: (i) the qualitative reasoning mechanism, and
(ii) the explanation mechanism. The reasoning mechanism enables Betty
to generate answers to questions from the concept map that the student
has taught her. The explanation mechanism enables Betty to produce a
detailed explanation of how she generated her answer.

The reasoning mechanism uses a simple chaining procedure to deduce
the relationship between a set of connected concepts. To derive the effect
of a change (either an increase or a decrease) in concept A on concept B, Betty
performs the following steps:

Starting from concept A, propagate the effect of its change through all
outgoing casual links (i.e., follow the link from concept A to all its adjacent
concepts) by pairwise propagation using the relations described in Table 1.
This process is repeated for the next set of concepts, which now have an
increase/decrease value. Repeated application of this step in a breadth-first
manner creates a chain of reasoning through which the change in the
source concept (A) propagates to define the change in the destination
concept (B).

However, for any concept along a propagation path, if the number of
incoming casual links is more than one, the forward propagation stops
until all incoming links are resolved. To derive the result from two
incoming links, we use the combination algebra defined in Table 2. A “?”
in Table 2 implies an unknown change (attributed to the ambiguity of
qualitative arithmetic).

If the number of incoming links is three or more, we count the number
of changes that fall into the six categories: large (—r), normal (-), and small
decrease (—g) and small (+s), normal (+), and large (+) increase. The
subscripts S and L in Tables 1 and 2 stand for small and large, respectively.
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TABLE 1 The Pair-Wise Effects

Change in Relation

Change in Entity

Combine the corresponding (i.e., small, medium, and large) changes;
always subtract the smaller number from the larger. For example, if there
is one arc that says small decrease (—g), and two incoming arcs that say small
increase (+s), the result is derived to be a small increase (+s). To compute the
overall effect, if the resultant value set has all increases or all decreases, we
select the largest change. Otherwise, we start at the smallest level of change
and combine with the next higher level in succession using the relations
defined in Table 2. The overall qualitative reasoning mechanism is a simpli-
fied implementation of qualitative process theory (Forbus 1984).

TABLE 2 Integrating Results from Two Paths
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To illustrate the reasoning process, we outline the explanation that Betty
generates when she is asked to answer a question: “If bacteria increase, what
happens to animals?,” using the ecosystem concept map shown in Figure 1.
As discussed earlier, the qualitative reasoning mechanism employs a
breadth-first search to find all paths that lead from the source concept to
the destination concept. If there is a single path from the source concept
to the destination concept, Betty follows the chain of reasoning step-by-step
to illustrate her explanation process. For example, an increase in bacteria
will result in more nutrients, and therefore, cause a larger amount of
crowded plants. Otherwise, propagation occurs along 2 path, until it
encounters a concept with two or more incoming links. In this case, the
effects from all of the links have to be aggregated before forward propa-
gation is resumed. An example is dissolved oxygen that has two incoming links.

To structure this process and make it easier for the student to under-
stand Betty’s reasoning processes, we break down the explanation into
chunks. Betty produces her explanation in a top down fashion. Forward
propagation reveals that bacteria affect animals through dissolved oxygen
(see Figure 3(a)). Betty summarizes the answer she has derived: “I'll
explain how bacteria affect animals. An increase in bacteria cause dissolved oxy-
gen to decrease a lot, which causes animals to decrease a lot.” She reports these
findings verbally, and illustrates the process in the concept map by ani-
mation. The system also includes a talk log button. The talk log keeps a
record of all previous conversations, and students can access them at
any time, to review previous dialogue. Note the process that we have
adopted to generate the explanation. Though Betty reasons forward,
she explains her answer using a back trace. We have found that students
find it easier to follow the reasoning process and the explanation, if it is
chunked in this way.

In the next step, Betty builds a more detailed explanation by exploring
how bacteria affect dissolved oxygen. Using the reasoning process, Betty
has discovered two forward paths from bacteria to dissolved oxygen. One
is a direct link, and the second involves a chain of reasoning through
the intermediate concepts nutrients, crowded plants, sunlight, and plants.
Figures 3(c) and (d) illustrate her explanation of how bacteria affect
dissolved oxygen using the propagation methods and chain of reasoning
through each one of these paths. As a last step, she explains the aggregation
step, and reiterates the final answer that an increase in bacteria is likely to
cause a large decrease in animals (i.e., macroinvertebrates and fish).

In summary, we designed the query and explanation mechanisms to
allow for a dialogue between the student teacher and the teachable agent
using a shared representation and reasoning mechanism. The goal was to
create an effective teaching environment with feedback that promoted
learning. Betty employs animation and speech to explain her thinking to
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FIGURE-3 Illustrating the structure and animation of the explanation process.

the students. The structure of Betty’s explanations is closely tied to the
reasoning algorithm. To avoid information overload, the explanation is
broken down into segments.

Quiz Betty

The learning environment has an additional mechanism that allows stu-
dents to assess what they have learned, by having Betty take a quiz, and
observing how she performs. The quiz questions, typically written by the
system designers and classroom teachers, provide an external assessment
mechanism. The quiz interface and a set of quiz questions are illustrated
in Figure 4. When Betty takes a quiz, the mentor agent grades the quiz
and informs Betty (and the student) if Betty’s answers are right or wrong.
The mentor also gives hints to help the student debug the concept map.
As discussed, the mentor employs a simple mechanism for generating feed-
back. By overlaying the student’s concept map on the expert map he ident-
ifies concepts and links that are essential for generating the right answer.
He uses this information to generate a hint about a missing concept or link
or a misplaced or misdirected link. Typically, Mr. Davis provides a hint for
each quiz question that was incorrectly answered. ‘
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In the first study that we describe next, the system implemented three
levels of hints. The first time a student got a quiz question wrong, the men-
tor’s agent’s hints provided pointers to online resource materials that con-
tained concepts and links relevant to the quiz question. If the answer to
the question was still incorrect when Betty took the quiz a second time,
the mentor’s second hint explicitly mentioned the name of the missing con-
cepts or relations linked to that query. If the student was unable to correct
the concept map before Betty took the quiz a third time, the hint provided
by the mentor agent was very direct. It told students where to insert missing
concepts and links in their concept maps. In some situations, it also told the
students about how to correct a misdirected causal link in their current map.

Studies on Betty’s Brain (Version 1)

To study the effectiveness of Betty’s Brain we conducted an experiment
with 50 fifth grade students from a science class in an urban public school
located in southeastern United States. We examined the effects of the inter-
active features of the teachable agent environment, which emulate the feed-
back that instructors receive from students during teaching. All students
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had the opportunity to teach their agent, and we manipulated whether stu-
dents could query Betty and observe her quiz performance following their
teaching efforts. Crossing these variables created four versions of the teach-
able agent environment: (i) concept map version (no query or quiz),
(ii) query version, (iii) quiz version, and (iv) full version (query and quiz).

We hypothesized that having opportunities to query and/or quiz Betty
would positively, but differentially, impact students’ learning. The query
feature helps students debug their own thinking and reasoning in the prob-
lem domain. If Betty answers questions in unexpected ways, students know
that they need to add to or modify their concept maps. In addition, and
perhaps more important, when Betty explains her answers, she makes
explicit the process of reasoning along chains of links, and also along mul-
tiple paths in a concept map. Therefore, we might expected that students
who used the query version of the software would create maps containing
more interlinked concepts. With respect to the quiz condition, we
expected that students would become better at identifying important con-
cepts and links to include in their maps, by mapping backward from the
quiz questions. We also expected that overall they would produce more
accurate concept maps because they had access to feedback on Betty’s quiz
performance.

The software was used in three sessions of one hour each. At the begin-
ning of session 1, students were introduced to features of the software. They
were asked to teach Betty about river ecosystems. In between sessions with
Betty, students engaged in independent study to prepare themselves to
teach Betty. Reference materials were also available for students to access
as needed when preparing to teach and when teaching Betty. Analysis of
the quality of the students’ maps in terms of the types and accuracy of links
suggest several conclusions. It was clear that the students who used the
query and quiz mechanisms understood causal relations better than the stu-
dents who did not. This was reflected in their concept maps, which had a
larger proportion of causal links than the teach-only group.

Figure 5(a) shows the ratio of links to concepts in the students’ maps,
a measure of the interconnectedness of their maps. Overall, query and full
students had significantly denser maps than other students. Evidently, hav-
ing the opportunity to query Betty, which made the reasoning process more
explicit, helped students understand the importance of interrelations
among concepts in their maps. Figure 5(b) shows the number or valid cau-
sal links contained in students’ maps. When coding the validity of the links
in students’ maps, credit was given for links comprising the mentor’s expert
map as well as for other relevant links related to river ecosystems (deter-
mined by our expert raters). Comparisons of the means indicated that by
session 3, query students had significantly more valid links in their maps
than students in the teach only group. Quiz and full students were
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FIGURE 5 (a) Ratio of links to concepts in students’ concept maps. (b) Number of valid causal links in
students’ concept maps.

intermediate and did not differ much from each other. Although the query
group had the most valid links, the quiz and full groups had more links
from the mentor’s map than students in the query group (Leelawong
et al., 2002). The data implies that students in the quiz and full groups
depended on the quiz and the teacher agent feedback in determining con-
cepts and relations to teach Betty. However, it was not clear how much of a
global understanding the quiz-only group had of their overall concept
maps. Regardless, this study showed the value of teachable agent paradigm
compared to simply representing knowledge. By the third session, students
who had an opportunity to query and/or quiz their agents did better overall
than students who simply created concepts maps of the domain.

Discussion

Results from the study indicate that both the query and quiz features
had beneficial effects on students’ learning about ecosystems. Students
who had access to the query feature had the most interlinked maps. The
query mechanism appears to be effective in helping students develop an
understanding of the interrelationships between entities in an ecosystem.
Also, the opportunities to quiz their agent helped students to decrease
the number of irrelevant concepts, increase the proportion of causal infor-
mation, and increase the number of expert causal links in their maps.
Thus, the quiz feature was effective in helping students decide the impor-
tant domain concepts and types of relationships to teach Betty. Students
inferred, and reasonably so, that if a concept or relationship was in the
quiz, it was important for Betty to know.

This notwithstanding, our observations of students during the study
suggest that quiz students may have been overly focused on getting the quiz
questions correct rather than making sure that Betty (and they themselves)
understood the information. We believe that this could partially be attributed
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to the nature of the suggestions provided by the mentor agent, which led
students to focus on making local changes to their maps instead of paying
attention to interdependencies at the level of the (eco)system. Surprisingly,
students in the query condition produced as many valid relevant causal
links as the conditions with the quiz feature, and without the benefit of quiz
feedback. This demonstrates the value of explicitly illustrating the reason-
ing process (by having Betty explain her answers) so that students under-
stand causal structures.

The full group did not generate significantly higher-quality maps than
the quiz and the query groups. An investigation of the activity logs revealed
a pattern where students’ primary focus was to get the quiz questions cor
rect. After getting Betty to take the quiz, they used the mentor’s hints to
make corrections to their maps. Very little time (if any) was spent on
re-reading the resources to gain more information. The query feature was
not used for deep analysis of the concept map; it was primarily used to check
whether Betty now answered the particular question correctly after revision.
The student then quickly returned to the quiz mode to check on the next
question that Betty could not answer correctly. The encouraging obser-
vation was that students were motivated and worked to make sure Betty
answered all the quiz questions correctly. However, it was not clear that stu-
dents were making sufficient effort to gain deep understanding of domain
knowledge so they could teach Betty better. As noted above, the mentor
agent feedback may have inadvertently allowed students to focus on making
quick local changes to their maps instead of taking more time to reason
globally with their maps.

AN IMPROVED VERSION OF BETTY’S BRAIN

Reflections on the results of the experimental study with version 1 of
Betty’s Brain led to a rethinking and redesign of the learning environment.
A primary concern was the students’ focus on getting quiz questions right,
without trying to understand the interdependence relations among entities
and how they affect the global balance in the river ecosystem structure.
As discussed earlier, we realized that feedback from the system (both from
the mentor and Betty) had to be improved to facilitate better learning.
Further, in exit interviews, students emphasized that they would have liked
Betty to be more active and exhibit characteristics of a good student during
the teaching phase (Davis et al. 2001). Several students suggested that Betty
should be more interactive, e.g., “react to what she was being taught, and take
the initiative and ask more questions on her own,” and “do some sort of game or
something and make it more interactive.” Consistent with this idea, we note that
the current version of Betty is passive and only responds when asked ques-
tions. We believe that to create a true learning-by-teaching environment, .
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Betty needs to better demonstrate qualities of human students. A tutor
gains deeper understanding from interactions with a tutee (Chi et al.
2000; Cole et al. 1999). These interactions can include answering questions,
explaining materials, and discovering misconceptions. Betty should be
designed to benefit her users in the same fashion.

Version 1 of Betty’s Brain provided online resources that students could
view to learn and clarify their understanding of domain material. There was
some feedback from the mentor agent, but it was mainly in the form of sug-
gestions to correct the concept map after Betty had taken a quiz. We would
have liked to have seen more use of the online resources when the student
was teaching Betty, or reflecting on her quiz performance, especially
because our project deals with a unique situation. The students as teachers
are novices in the domain. They are also novices at teaching.

An improved learning by teaching environment should incorporate
mechanisms to assist students in all phases of the teaching process: prep-
aration, teaching, and monitoring (McAlpine 1999). The challenge was to care-
fully redesign the learning environment to provide appropriate scaffolds
and proper feedback mechanisms to help students overcome their initial
difficulties in learning about the domain and their figuring out how to teach
Betty well. This led to the reimplementation of 2 number of components in
the learning environment. For one, we restructured the online resources to
emphasize the concepts of interdependence and balance and the three pri-
mary cycles that govern ecosystem behavior: (i) the oxygen cycle, (ii) the
food chain, and (iii) the waste cycle. An advanced keyword search technique
allows students to access paragraphs of text with the occurrences of a
selected keyword or a pair of selected keywords highlighted.

Changes were also made to the mentor agent. In the previous version, the
mentor made suggestions on how to correct specific errors in the concept map
after Betty took a quiz. As discussed, this led to students making local changes
to their concept maps without trying to gain a proper understanding of the
relations between domain concepts. We decided that in the new version of
the system, the mentor, Mr. Davis, would direct the student to study more
about interdependence among concepts, and how this interdependence leads
to “chains of reasoning,” i.e., an increase or decrease in a concept can affect a
number of other concepts through a sequence of propagations. He directed
students to study and reflect on relevant sections in the resources, rather than
suggesting what changes to make to their concept maps. Like before, the men-
tor provides levels of feedback. His initial comments are general, but they
become more specific (e.g., “You may want to study the role of bacteria
in the waste cycle”) if errors persist, or the student seeks help. In addition,
Mr. Davis provided more metacognitive feedback by providing information
on how to be a better learner (e.g., he would point out the importance of goal
setting, understanding chains of dependencies, and self-assessing one’s
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knowledge while learning) and how to be a better teacher (e.g., by making
high-level suggestions about the representational and reasoning structures,
and asking the student to assess Betty’s understanding of what they taught
her by getting her to answer relevant queries and studying her responses).

Betty’s agent persona was also redesigned to incorporate selfregulation
strategies proposed by Zimmerman (1989). These include metacognitive stra-
tegies like monitoring, assessing, goal setting, seeking assistance, and reflect-
ing on feedback, all of which we believe can aid the learning and teaching
tasks. We exploited some of these strategies to drive Betty’s interactions with
her student teacher. For example, when the student is building the concept
map for Betty, she occasionally demonstrates how to derive the effects of
the change in an entity on other entities through a chain of reasoning. She
may query the user, and sometimes remark (right or wrong) that the answer
she is deriving does not seem to make sense. The idea of these spontaneous
prompts is to get the student to reflect on what they are teaching, and perhaps,
like a good teacher check on their tutee’s learning progress. At other times,
Betty may directly suggest to the students that they need to query her to ensure
that she can reason correctly with the current concept map. At times, Betty
refuses to take a quiz, because she feels that she has not been taught enough,
or that the student has not given her sufficient practice by asking queries.

In the present version of the system, Betty directly discusses the results
with the student teacher by reporting on (i) her thoughts of her perform-
ance on the particular quiz: She may say that she is happy to see her per-
formance has improved, or express disappointment that she failed to
answer a question more than once, and (ii) the mentor’'s comments on
Betty’s performance in the quiz, such as: “Hi, I'm back. I'm feeling bad because
I could not answer some questions on the quiz. Mr. Davis (the mentor) said that 1
should have studied about the various entities that participate in the waste cycle.”

We believe self-regulation strategies provide the right scaffolds to help
students learn about a complex domain, while also promoting deep under-
standing, transfer, and lifelong learning. All this is achieved in a constructi-
vist exploratory environment, with the student primarily retaining the locus
of control. Only when students seem to be hopelessly stuck, does Mr. Davis
intervene with specific help. Next, we present a multiagent architecture
that provides a more efficient implementation of the learning-by-teaching
system with self-regulation strategies.

A New Multiagent Architecture for Betty’s Brain

From a learning system viewpoint, a multiagent architecture was
developed to overcome drawbacks of the previous version of Betty’s Brain,
and to introduce the new features to promote inquiry-based, self-regulated
learning that we have discussed earlier. The software system was redesigned .
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to modularize the various functions required in the system, and to systemati-
cally introduce the notion of interactions among the agents (Ferber 1999).

The current multiagent system, illustrated in Figure 6, uses four agents:
the teachable agent, the mentor agent, and two auxiliary agents: the student
agent and the environment agent. The explicit presence of the last two agents
in the Betty’s Brain environment is primarily to establish a standardized
communication protocol among all agents that participate in the system. In
the future, this will provide greater flexibility to move agents from one scen-
ario to another. The student agent is not a person. It provides the interface
for the studentteacher to communicate with the teachable agent, Betty,
and the mentor agent, Mr. Davis. The environment agent, which acts as a
“facilitator” (Finin and Fritzson 1994) is in essence a medium through which
all of the agents communicate with each other and get to observe the global
state of the system. This agent maintains information about the other agents
and the services that they can provide. When an agent sends a request to
the environment agent it: (i) forwards the request to an agent that can handle
it, (ii) decomposes the request if different parts are to be handled by
different agents and sends them to the respective agents, and (iii) translates
information between vocabularies to match an agent interface.

Environment Agent

Betty’s Brain

Mentor Agent

Resources

Teachable Agent

Student Agent

FIGURE 6 Multiagent architecture for Betty’s Brain.
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The system uses a variation of the FIPA ACL agent communication
language (Labrou et al. 1999). Each message sent by an agent contains a
description of the message, message sender, recipient, recipient class,
and the actual content of the message. Communication is implemented
using a listener interface, where each agent listens only for messages from
the environment agent and the environment agent listens for messages
from all the other agents. In the teachable agent, for example, the monitor
receives messages from the environment and patterns are stored in the
pattern tracker. Memory records past events received from the monitor.
The decision maker receives a request from the monitor. Within the
decision maker, the reasoner and emotions use these requests along with
memorized information to make a decision. A message is then sent to
the executive which decides the modality with which to communicate this
decision to the environment.

Experimental Studies with the Multiagent System

The experimental study conducted in the second year compared three
different versions of the system. All three groups had access to identical
resources on river ecosystems, the same quiz questions, and the same access
to the mentor agent, Mr. Davis. In the first system, students did not teach
Betty. Instead, they were taught by the mentor agent, Mr. Davis, who asked
them to construct concept maps to answer three sets of quiz questions that
were designed to meet curricular guidelines. When students submitted
their maps for a quiz, Mr. Davis, playing the role of a tutor, provided direc-
ted feedback to help the students correct errors in the quiz answers. We
called this the Intelligent Tutoring System (ITS) version of the system.
The two other groups were told to teach Betty and help her pass a test so
she could become a member of the school science club. Both groups
had access to the query and quiz features. In one of the two versions of
the learning by teaching systems, which we call the baseline learning by
teaching (LBT) system, students could query Betty as they were teaching
her, ask Betty to take a quiz after they taught her, and, if there were errors
in the quiz answers, Mr. Davis provided the same feedback as the ITS sys-
tem. The only difference was that feedback was directed to Betty because
she took the quiz. The second learning by teaching system had the new,
more responsive Betty with self-regulated behavior. In addition, the mentor
agent was designed to provide a wide variety of help that included infor-
mation on how to be better learners and how to be better teachers. Like
before, Mr. Davis could also provide feedback on domain knowledge con-
cepts. But this group had to explicitly query Mr. Davis to get any feedback.
We called this version of the system the self-regulated learning (SRL) sys-
tem. The SRL condition was set up to develop more active learners by
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promoting the use of selfregulation strategies. The ITS condition was created
to contrast learning by teaching environments from tutoring environments.
There were two primary research questions we set out to answer were:

1. Are learning-by-teaching environments more effective in helping stu-
dents to learn independently and gain deeper understanding of domain
knowledge than pedagogical agents?

2. Does the selfregulated learning component enhance learning in
learning-by-teaching environments?

Self-regulated learning should be an effective framework for providing
feedback because it promotes the development of higherorder cognitive
skills (Pintrich and DeGroot 1990) and it is critical to the development of
problem-solving ability (Novak 1996). In addition, cognitive feedback is
more effective than outcome feedback for decision-making tasks (Moreno
and Mayer 2002). Cognitive feedback helps users monitor their learning
needs (achievement relative to goals) and guides them in achieving their
learning objectives (cognitive engagement by applying tactics and strategies).

Experimental Procedure

Students from two fifth grade classrooms were divided into three equal
groups of 15 students each using a stratified sampling method. Stra-
tification was based on students’ standard achievement test scores in math-
ematics and language. The students worked on a pretest with twelve
questions before they were separately introduced to their particular ver-
sions of the system. The three groups worked for six 45-minute sessions
over a period of three weeks to create their concept maps. All groups
had access to the online resources while they worked on the system.

At the end of the six sessions, every student took a posttest that was
identical to the pretest. Two other delayed posttests were conducted about
seven weeks after the initial experiment: (i) a memory fest, where students
were asked to recreate their ecosystem concept maps from memory (there
was no help or intervention when performing this task), and (ii) a prep-
aration for future learning transfer test, where they were asked to construct a
concept map and answer questions about the land-based nitrogen cycle.
Students had not been taught about the nitrogen cycle, so they would have
to learn from resources during the transfer phase.

Results

In this study, we focus on the results of the two delayed tests, and the
conclusions we can draw from these tests on the students’ learning
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processes. As a quick review of the initial learning, students in all conditions
showed improved performance from pre- to posttest on their knowledge of
interdependence (§’s < .01, paired T-tests). However, there was no improve-
ment in their understanding of ecosystem balance. There were few differ-
ences between the conditions in terms of the quality of their final maps
(the LBT and SRL groups showed better grasp of the role of bacteria in pro-
cessing waste in their post test answers). However, there were notable
differences in their use of the system during the initial learning phase.

Figure 7 shows the average number of resource, query, and quiz
requests per session by the three groups. It is clear from the plots that
the SRL group made a slow start as compared to the other two groups. This
can primarily be attributed to the nature of the feedback, i.e., the ITS and
LBT groups received specific content feedback after a quiz, whereas the
SRL group tended to receive more generic feedback that focused on self-
regulation strategies. Moreover, in the SRL condition, Betty would refuse
to take a quiz unless she felt the user had taught her enough, and prepared
her for the quiz by asking questions. After a couple of sessions, the SRL
group showed a surge in map creation and map analysis activities, and their
final concept maps were comparable to the other groups.

It seems the SRL group spent their first few sessions in learning self-
regulation strategies, but once they learned them their performance
improved significantly. Table 3 presents the mean number of expert
concepts and expert causal links in the student maps for the delayed
memory test. Results of an ANOVA test on the data, with Tukey’s LSD
to make pairwise comparisons, showed that the SRL group recalled sig-
nificantly more links that were also in the expert map (which nobody
actually saw).
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FIGURE 7 Session by session data for study 2.
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TABLE 3 Results of the Memory Test

SRL LBT ITS
Student map included: mean (sd) mean (sd) mean (sd)
Expert concepts 6.7 (.6) 6.4 (.5) 5.8 (.6)
Expert causal links 3.3% (.6) 1.7 (.6) 2.0 (.6)

“Significantly greater than LBT, p < .05;

TABLE 4 Results of the Transfer Study

SRL LBT ITS
Student map included: mean (sd) mean (sd) mean (sd)
Expert concepts 6.1* (.6) 5.2 (.5) 4.1 (.6)
Expert causal links 1.1% (.3) 0.1 (.3) 0.2 (.3)

“Significantly greater than ITS, p < .05;
’significantly greater than LBT, p < .05

We thought that the effect of SRL would not be to improve memory,
but rather to provide students with more skills for learning subsequently.
When one looks at the results of the transfer task in the test on prep-
aration for future learning, the differences between the SRL group and
the other two groups are significant. Table 4 summarizes the results of
the transfer test, where students read resources and created a concept
map for the land-based nitrogen cycle which they had not studied pre-
viously. The mentor agent’s only provided feedback on the correctness
of the answers to the quiz questions, but no hints on how the students
could improve Betty’s performance. All three groups received the same
treatment. There are significant differences in the number of expert con-
cepts in the SRL versus ITS group maps, and the SRL group had signifi-
cantly more expert causal links than the LBT and ITS groups. The
effects of teaching selfregulation strategies had an impact on the stu-
dents’ abilities to learn a new domain, two months later.

DISCUSSION AND CONCLUSIONS

The second set of experimental result brings out a2 number of interest-
ing issues. First, since the tutored students were focused on the task of
creating concept maps to answer specific questions, they initially outper-
formed the two learning-by-teaching groups. The SRL group seemed to
be the slowest of the three, but, as discussed earlier, this can be attributed
to the fact that this group spent the first couple of sessions in learning
selfregulation strategies. Once they understood these strategies,
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their performance improved considerably, and at the end of the initial
learning period, all three groups showed about equal performance. This
was measured in terms of the quality of their concept maps.

The three groups had about equal performance in their memory tests,
but the SRL group demonstrated better abilities to learn and understand
new material by outperforming the ITS and LBT groups in the far transfer
test. This result is important in that it demonstrates the significance of SRL
strategies in aiding understanding and transfer in learning by teaching
environments. Students in all three groups demonstrated the same learning
performance in traditional learning tasks, but the SRL group demonstrated
better ability to learn new material without the scaffolds that were provided
in the first part of the study. We believe that the difference between the SRL
and the other two groups would have been more pronounced if the transfer
test study had been conducted over a longer period of time.

In summary, we have developed a new form of pedagogical agent and
a learning environment that goes much beyond the notion of virtual tutors
and traditional learning by teaching systems. In future work, we will extend
the concept map representation and reasoning mechanisms to accommo-
date reasoning over time, feedback effects, and cycles of behavior, all of
which are common phenomena in natural processes. It is possible that
other extensions to this environment, such as getting students to create
Betty agents that compete with each other in game shows, or projecting a
set of student concept maps in front of the class so students may compare
and contrast maps will add to learning and motivation (Schwartz, Brans-
ford, and Sears, in press). Finally, an exciting direction would be to com-
bine teachable agents with game environments. The goal will be to
create a sequence of challenging knowledge tasks. Students will need to
learn and teach different agents, each with their own representational
and reasoning structures to solve these challenges. The environment can
be structured to allow for single players to learn complex problem solving
through multiple forms of interaction further social interactions through
collaborative problem solving, and create competitive environments where
students can compete with each other through their teachable agents.
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